中学校2年生 *単元確認テスト⑩*					静電気	と電流		
組	番	氏 名		思 ★	・表	技能	知・理	<u> </u>
					/ 5	/ 1	/4	/10

1 図 1 のようにしてプラスチックのストローA, B をティッシュペーパーでこすった。その後、

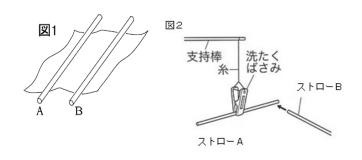
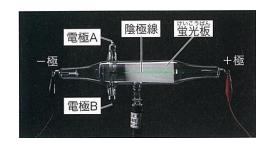
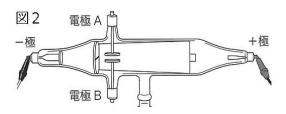


図2のようにストローAを洗たくばさみには さんでつるし、そこにもう1本のストローB を近づけた。次の問いに答えなさい。

(1) ストローBを近づけると、ストローA はどうなるか。(知・理:1点)


ストローBから離れる

- (2) ストローA は一の電気を帯びていた。ストローB が帯びたのは一、+のどちらの電気か。 (知・理:1点)
- (3) このように、静電気が起きるのは、ストローとティッシュペーパーの間で、何がどちらからどちらへ 移動したためか。説明しなさい。(思・表:1点)


電子が、ティッシュペーパーからストロー に移動したから。 ★

2 真空放電管の一極と+極の間に高電圧を加えたところ、図1のように陰極線の道筋を観察した。 次の問いに答えなさい。

図 1

(1) 電極Aが-極、電極Bが+極になるよう電圧を加えた。 陰極線はどのように進むか。下の図2に矢印 \rightarrow で記入しなさい。(技能:1点)

(1) 電極AとBの間を通って上向きの曲線の矢印をひく

- (2) 次の文の(①)、(②)にあてはまる語 を記入しなさい。(知・理:全正1点)
 - ・陰極線は、(①) の電気を帯びた小さな粒子の流れである。この小さな粒子を(②) という。

(1)	図 2	に記入する	\circ
(2)	(1)	_	
全正			
	2	電子	

- (3) ドイツの物理学者のレントゲンは、陰極線 の研究から物質を通り抜ける未知なるものを 発見しました。それは何か。(知・理:1点)
- (4) 現代社会では、(3)のものをはじめとした放射線は、いろいろなことに有効に利用されている。どのようなことに利用されているか。 2つ書きなさい。(思・表:1点×2)
- (5) 多量の放射線を体に受けると人体に影響が 出ることが分かっている。多量の放射線から 身を守る方法として、「放射線を受ける時間を 短くする」という方法があるが、これ以外に 有効な方法を2つ答えなさい。

(思・表:1点×2)

(3)	X 線	
(4)	医療関係(がんなどの病気治療)	*
	植物の品種改良 等	*
(5)	放射性物質からはなれる	*
(5)	放射線をさえぎる 等	*

中学校2年生 *単元確認テスト⑪*					電流の	の性質		
組	番	氏 名		思· ★	表	技能	知・理	計
					/2	/3	/ 5	/10

1 次の各問いに答えなさい。

は、

(1) ある回路に流れる電流を調べた。図1は、電流計の針のふれのようすである。

このとき、電流の大きさはいくらか。(技能:1点)

50mA 500mA 5 A + D.C

(1)		1 2 0 mA	0
(2)	1	直流	
(2)	2	交 流	

(2) 電流について説明した次の文中の(①)、(②)にあてはまることばを書きなさい。 乾電池に流れる電流のように、一定の向きに一定の強さで流れる電流を(①)という。家庭 の電灯線に流れる電流のように、向きや強さが絶えず変化している電流を(②)という。

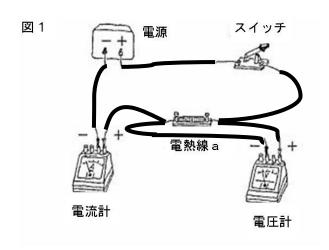
(知・理:全正1点)

- 2 右の表は、各電気器具の100Vの電圧を加えたときの消費電力を示したものである。
 - (1) 次の (①) \sim (③) にあてはまることばを書きなさい。(知・理:1点)

電力の単位には、(①)(記号W)が使われる。1W

- (②) の電圧を加えて(③) の電流が流れたときの電力である。
- (2) 電球 A、B を直列につないで 1 0 0 V の電源につないだ。

明るく光るのは、A、Bのどちらか。(思・表:1点)


電気器具	消費電力〔W〕
アイロン	1000
電気ポット	8 0 0
ドライヤー	1 2 0 0
電球 A	4 0
電球 B	6 0

(3) 電気ポットを1時間使ったときの電力量 [J] はいくらか。(知・理:1点)

(1)	1)	ワット	(2)	A	*
	2	1 V (0.1V)	(3)	2880000 J (800Wh)	
	3	1A (10A) 両方合って正解			

3 2種類の電熱線 a、b を用いて、電熱線に加える電圧を変えて、流れる電流の変化を調べた。次の 問いに答えなさい。 (**入試問題にチャレンジ!** 平成 16 年度富山県改)

図 2

- 電流 [A] 2.0 1.5 1.0 0.5 0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 [V]
- 図3
 電熱線 a
 電熱線 b
- (1) 図1にある電源、電熱線 a、電圧計、電流計、スイッチをどのようにつなげばよいか、図1の中に導線をかき加えて回路を完成させなさい。(技能:1点)○
- (2) 電熱線 a、b それぞれの電圧と電流の関係を調べると 図2のようになった。 図2のグラフにおいて、電圧と 電流はどのような関係があるか。また、このような関係 を何というか。(知・理:1点×2)
- (3) 電熱線 a の抵抗の値を求めなさい。(技能:1点)
- (4) 図3のように電熱線 a、b を並列につないで 7.0V の 電圧を加えたとき、図3のP点を流れる電流はいくらか、求めなさい。(思・表:1点)

(2)	比例	
(2)	オームの法則	
(3)	3. 5Ω	0
(4)	3. 5A	*

中学校2年生 *単元確認テスト⑫*					電流と	:磁界		
組	番	氏 名		思★	• 表	技能	知・理	<u> </u>
					/3	/4	/ 3	/10

1 コイルと棒磁石で電流が流せるか調べる実験をした。次の問いに答えなさい。

図 1

(1) 図1のように、コイルに N 極を 出し入れすると、検流計の針のふ れは、表のようになり、棒磁石を 動かしたとき、コイルに電流が流 れることがわかった。次の文は、 この現象について書いたものである。

なり、棒磁石を ふれる向き 一側 イルに電流が流 た。次の文は、 (1) ①

表

(①) \sim (④) にあてはまることばを書きなさい。

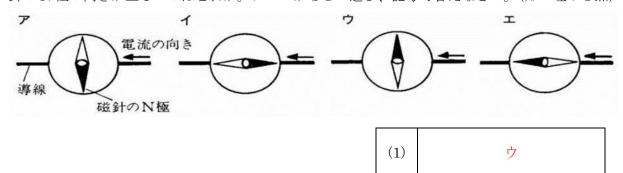
(知・理:1点)

コイルの内部の(①)が変化するとき、コイルの内部に電流を流そうとする電圧が生じる。これを(②)という。このとき(③)が流れる。また、(②)を利用して電流が得られるようにしたものが(④)である。

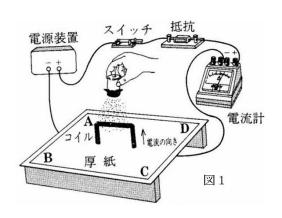
- (2) コイルの中に棒磁石を入れたままにしたとき、電流 はどうなるか。(知・理:1点)
- (3) 図 2 のように、棒磁石の N 極を下向きに静止させた ままコイルを近づけると、検流計の針は、+ 側、- 側 のどちらにふれるか。(思・表: 1 点)
- (4) 図1の実験で、棒磁石を強い磁石に変えると、コイル に強い電流が流れた。これ以外に、電流を強くする方法 を1つ書きなさい。(技能:1点)

(1)	1	磁界	
	2	電磁誘導	
	3	誘導電流	
	4	発電機	
(2)	ট	たれない(ふれない)	
(3)		一側	*
(4)	1	磁石を速く動かす	0

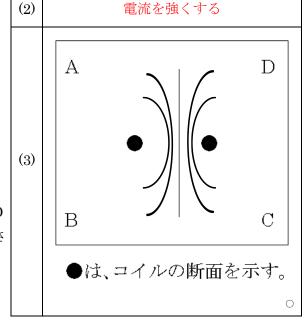
図 2

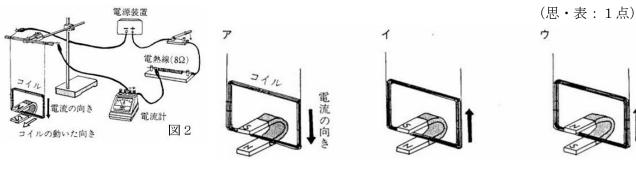

入れたまま

とり出す


十側

入れる


- 2 電流と磁界の関係について調べた。次の問いに答えなさい。
 - (1) 直流の電流によってできる磁界の向きを磁針を使って調べた。磁針を導線の上に置いたとき、磁 針の N 極の向きが正しいのはどれか。ア~エから1つ選び、記号で答えなさい。(知・理:1点)


(2) 図1で回路に電流を流し、鉄粉を一様にまきながら厚紙を手でたたき、電流による磁界の様子を調べた。しかし、磁界が弱く鉄粉の模様がはっきりしなかった。磁界を強くする方法を1つ書きなさい。(技能:1点)

- (3) (2) の結果、模様がはっきりした。厚紙 ABCD の上にできている磁界の様子を磁力線で表しなさい。(技能:1点)
- (4) 図2のように、磁界中のコイルに直流の電流を流すとき、コイルが磁界からどのような力を

受けるか調べた。このとき電流を流すとコイルは矢印 () の向きに動いた。このコイルが、図 2 と同じ向きに動くのは次のどの場合か。ア〜ウから1つ選び、記号で答えなさい。

(5) 電流の強さをかえないで、導線にかかる力を 大きくする方法を1つ書きなさい。

(技能:1点)

(6) 実生活において、磁界中のコイルに直流の電流を流しコイルが磁界から受けた力を利用したものにどんなものがあるか、1つ書きなさい。

(思・表:1点)

(4)	1	*
(5)	コイルの巻き数を多くする。	
(5)	(磁力の強い磁石を使う)	0
(a)	モーターを使った機器	
(6)		*